Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Adv Stat Anal ; 106(3): 349-382, 2022.
Article in English | MEDLINE | ID: covidwho-2014183

ABSTRACT

A pandemic poses particular challenges to decision-making because of the need to continuously adapt decisions to rapidly changing evidence and available data. For example, which countermeasures are appropriate at a particular stage of the pandemic? How can the severity of the pandemic be measured? What is the effect of vaccination in the population and which groups should be vaccinated first? The process of decision-making starts with data collection and modeling and continues to the dissemination of results and the subsequent decisions taken. The goal of this paper is to give an overview of this process and to provide recommendations for the different steps from a statistical perspective. In particular, we discuss a range of modeling techniques including mathematical, statistical and decision-analytic models along with their applications in the COVID-19 context. With this overview, we aim to foster the understanding of the goals of these modeling approaches and the specific data requirements that are essential for the interpretation of results and for successful interdisciplinary collaborations. A special focus is on the role played by data in these different models, and we incorporate into the discussion the importance of statistical literacy and of effective dissemination and communication of findings.

2.
PLoS One ; 17(5): e0265957, 2022.
Article in English | MEDLINE | ID: covidwho-1910564

ABSTRACT

BACKGROUND AND OBJECTIVE: The distribution of the newly developed vaccines presents a great challenge in the ongoing SARS-CoV-2 pandemic. Policy makers must decide which subgroups should be vaccinated first to minimize the negative consequences of the pandemic. These decisions must be made upfront and under uncertainty regarding the amount of vaccine doses available at a given time. The objective of the present work was to develop an iterative optimization algorithm, which provides a prioritization order of predefined subgroups. The results of this algorithm should be optimal but also robust with respect to potentially limited vaccine supply. METHODS: We present an optimization meta-heuristic which can be used in a classic simulation-optimization setting with a simulation model in a feedback loop. The meta-heuristic can be applied in combination with any epidemiological simulation model capable of depicting the effects of vaccine distribution to the modeled population, accepts a vaccine prioritization plan in a certain notation as input, and generates decision making relevant variables such as COVID-19 caused deaths or hospitalizations as output. We finally demonstrate the mechanics of the algorithm presenting the results of a case study performed with an epidemiological agent-based model. RESULTS: We show that the developed method generates a highly robust vaccination prioritization plan which is proven to fulfill an elegant supremacy criterion: the plan is equally optimal for any quantity of vaccine doses available. The algorithm was tested on a case study in the Austrian context and it generated a vaccination plan prioritization favoring individuals age 65+, followed by vulnerable groups, to minimize COVID-19 related burden. DISCUSSION: The results of the case study coincide with the international policy recommendations which strengthen the applicability of the approach. We conclude that the path-dependent optimum optimum provided by the algorithm is well suited for real world applications, in which decision makers need to develop strategies upfront under high levels of uncertainty.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Aged , Algorithms , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Vaccination
3.
Advances in statistical analysis : AStA : a journal of the German Statistical Society : Duplicate, marked for deletion ; : 1-34, 2022.
Article in English | EuropePMC | ID: covidwho-1781991

ABSTRACT

A pandemic poses particular challenges to decision-making because of the need to continuously adapt decisions to rapidly changing evidence and available data. For example, which countermeasures are appropriate at a particular stage of the pandemic? How can the severity of the pandemic be measured? What is the effect of vaccination in the population and which groups should be vaccinated first? The process of decision-making starts with data collection and modeling and continues to the dissemination of results and the subsequent decisions taken. The goal of this paper is to give an overview of this process and to provide recommendations for the different steps from a statistical perspective. In particular, we discuss a range of modeling techniques including mathematical, statistical and decision-analytic models along with their applications in the COVID-19 context. With this overview, we aim to foster the understanding of the goals of these modeling approaches and the specific data requirements that are essential for the interpretation of results and for successful interdisciplinary collaborations. A special focus is on the role played by data in these different models, and we incorporate into the discussion the importance of statistical literacy and of effective dissemination and communication of findings.

4.
Cochrane Database Syst Rev ; 9: CD013718, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-777342

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by the novel betacoronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Most people infected with SARS-CoV-2 have mild disease with unspecific symptoms, but about 5% become critically ill with respiratory failure, septic shock and multiple organ failure. An unknown proportion of infected individuals never experience COVID-19 symptoms although they are infectious, that is, they remain asymptomatic. Those who develop the disease, go through a presymptomatic period during which they are infectious. Universal screening for SARS-CoV-2 infections to detect individuals who are infected before they present clinically, could therefore be an important measure to contain the spread of the disease. OBJECTIVES: We conducted a rapid review to assess (1) the effectiveness of universal screening for SARS-CoV-2 infection compared with no screening and (2) the accuracy of universal screening in people who have not presented to clinical care for symptoms of COVID-19. SEARCH METHODS: An information specialist searched Ovid MEDLINE and the Centers for Disease Control (CDC) COVID-19 Research Articles Downloadable Database up to 26 May 2020. We searched Embase.com, the CENTRAL, and the Cochrane Covid-19 Study Register on 14 April 2020. We searched LitCovid to 4 April 2020. The World Health Organization (WHO) provided records from daily searches in Chinese databases and in PubMed up to 15 April 2020. We also searched three model repositories (Covid-Analytics, Models of Infectious Disease Agent Study [MIDAS], and Society for Medical Decision Making) on 8 April 2020. SELECTION CRITERIA: Trials, observational studies, or mathematical modelling studies assessing screening effectiveness or screening accuracy among general populations in which the prevalence of SARS-CoV2 is unknown. DATA COLLECTION AND ANALYSIS: After pilot testing review forms, one review author screened titles and abstracts. Two review authors independently screened the full text of studies and resolved any disagreements by discussion with a third review author. Abstracts excluded by a first review author were dually reviewed by a second review author prior to exclusion. One review author independently extracted data, which was checked by a second review author for completeness and accuracy. Two review authors independently rated the quality of included studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for diagnostic accuracy studies and a modified form designed originally for economic evaluations for modelling studies. We resolved differences by consensus. We synthesized the evidence in narrative and tabular formats. We rated the certainty of evidence for days to outbreak, transmission, cases missed and detected, diagnostic accuracy (i.e. true positives, false positives, true negatives, false negatives) using the GRADE approach. MAIN RESULTS: We included 22 publications. Two modelling studies reported on effectiveness of universal screening. Twenty studies (17 cohort studies and 3 modelling studies) reported on screening test accuracy. Effectiveness of screening We included two modelling studies. One study suggests that symptom screening at travel hubs, such as airports, may slightly slow but not stop the importation of infected cases (assuming 10 or 100 infected travellers per week reduced the delay in a local outbreak to 8 days or 1 day, respectively). We assessed risk of bias as minor or no concerns, and certainty of evidence was low, downgraded for very serious indirectness. The second modelling study provides very low-certainty evidence that screening of healthcare workers in emergency departments using laboratory tests may reduce transmission to patients and other healthcare workers (assuming a transmission constant of 1.2 new infections per 10,000 people, weekly screening reduced infections by 5.1% within 30 days). The certainty of evidence was very low, downgraded for high risk of bias (major concerns) and indirectness. No modelling studies reported on harms of screening. Screening test accuracy All 17 cohort studies compared an index screening strategy to a reference reverse transcriptase polymerase chain reaction (RT-PCR) test. All but one study reported on the accuracy of single point-in-time screening and varied widely in prevalence of SARS-CoV-2, settings, and methods of measurement. We assessed the overall risk of bias as unclear in 16 out of 17 studies, mainly due to limited information on the index test and reference standard. We rated one study as being at high risk of bias due to the inclusion of two separate populations with likely different prevalences. For several screening strategies, the estimates of sensitivity came from small samples. For single point-in-time strategies, for symptom assessment, the sensitivity from 12 cohorts (524 people) ranged from 0.00 to 0.60 (very low-certainty evidence) and the specificity from 12 cohorts (16,165 people) ranged from 0.66 to 1.00 (low-certainty evidence). For screening using direct temperature measurement (3 cohorts, 822 people), international travel history (2 cohorts, 13,080 people), or exposure to known infected people (3 cohorts, 13,205 people) or suspected infected people (2 cohorts, 954 people), sensitivity ranged from 0.00 to 0.23 (very low- to low-certainty evidence) and specificity ranged from 0.90 to 1.00 (low- to moderate-certainty evidence). For symptom assessment plus direct temperature measurement (2 cohorts, 779 people), sensitivity ranged from 0.12 to 0.69 (very low-certainty evidence) and specificity from 0.90 to 1.00 (low-certainty evidence). For rapid PCR test (1 cohort, 21 people), sensitivity was 0.80 (95% confidence interval (CI) 0.44 to 0.96; very low-certainty evidence) and specificity was 0.73 (95% CI 0.39 to 0.94; very low-certainty evidence). One cohort (76 people) reported on repeated screening with symptom assessment and demonstrates a sensitivity of 0.44 (95% CI 0.29 to 0.59; very low-certainty evidence) and specificity of 0.62 (95% CI 0.42 to 0.79; low-certainty evidence). Three modelling studies evaluated the accuracy of screening at airports. The main outcomes measured were cases missed or detected by entry or exit screening, or both, at airports. One study suggests very low sensitivity at 0.30 (95% CI 0.1 to 0.53), missing 70% of infected travellers. Another study described an unrealistic scenario to achieve a 90% detection rate, requiring 0% asymptomatic infections. The final study provides very uncertain evidence due to low methodological quality. AUTHORS' CONCLUSIONS: The evidence base for the effectiveness of screening comes from two mathematical modelling studies and is limited by their assumptions. Low-certainty evidence suggests that screening at travel hubs may slightly slow the importation of infected cases. This review highlights the uncertainty and variation in accuracy of screening strategies. A high proportion of infected individuals may be missed and go on to infect others, and some healthy individuals may be falsely identified as positive, requiring confirmatory testing and potentially leading to the unnecessary isolation of these individuals. Further studies need to evaluate the utility of rapid laboratory tests, combined screening, and repeated screening. More research is also needed on reference standards with greater accuracy than RT-PCR. Given the poor sensitivity of existing approaches, our findings point to the need for greater emphasis on other ways that may prevent transmission such as face coverings, physical distancing, quarantine, and adequate personal protective equipment for frontline workers.


Subject(s)
COVID-19/diagnosis , Mass Screening/methods , SARS-CoV-2 , Air Travel/statistics & numerical data , Airports , Bias , COVID-19/transmission , COVID-19 Nucleic Acid Testing/standards , Cohort Studies , Diagnostic Errors/statistics & numerical data , False Negative Reactions , False Positive Reactions , Health Personnel , Humans , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Models, Theoretical , Outcome Assessment, Health Care , Sensitivity and Specificity , Travel-Related Illness
SELECTION OF CITATIONS
SEARCH DETAIL